游戏服务器结构探讨

发表于2016-08-13
评论0 828浏览

想免费获取内部独家PPT资料库?观看行业大牛直播?点击加入腾讯游戏学院游戏程序行业精英群

711501594
  有关游戏开发:游戏开发始终是个小项目,另外由于开发时间的限制,软件工程的思想和方法在游戏开发领域并不怎么受欢迎。从游戏开发团队的规模也能看出,基本上只能算小开发团队,有些工作室性质的,那就更简单了。
  我所了解的早些的开发团队,其成员间没有什么严格的分工,大家凭兴趣自由选择一些模块来负责,完成了再去负责另一模块,有其他同事的工作需要接手或协助的也会立即转入。所以游戏开发人员基本都是多面手,从网络到数据库,从游戏逻辑到图形图象,每一项都有所了解,并能实际应用。或者说都具有非常强的学习能力,在接手一项新的任务后能在很短的时间内对该领域的技术迅速掌握并消化,而且还能现炒现卖。当然,这也与早期2D游戏的技术要求相对比较简单,游戏逻辑也没有现在这般复杂有关。而更重要的可能是,都是被逼出来的吧!:)

1、服务器结构探讨 -- 最简单的结构
  所谓服务器结构,也就是如何将服务器各部分合理地安排,以实现最初的功能需求。所以,结构本无所谓正确与错误;当然,优秀的结构更有助于系统的搭建,对系统的可扩展性及可维护性也有更大的帮助。
  好的结构不是一蹴而就的,而且每个设计者心中的那把尺都不相同,所以这个优秀结构的定义也就没有定论。在这里,我们不打算对现有游戏结构做评价,而是试着从头开始搭建一个我们需要的MMOG结构。
  对于一个最简单的游戏服务器来说,它只需要能够接受来自客户端的连接请求,然后处理客户端在游戏世界中的移动及交互,也即游戏逻辑处理即可。如果我们把这两项功能集成到一个服务进程中,则最终的结构很简单:
  client ----- server
  嗯,太简单了点,这样也敢叫服务器结构?好吧,现在我们来往里面稍稍加点东西,让它看起来更像是服务器结构一些。
   一般来说,我们在接入游戏服务器的时候都会要提供一个帐号和密码,验证通过后才能进入。关于为什么要提供用户名和密码才能进入的问题我们这里不打算做过 多讨论,云风曾对此也提出过类似的疑问,并给出了只用一个标识串就能进入的设想,有兴趣的可以去看看他们的讨论。但不管是采用何种方式进入,照目前看来我 们的服务器起码得提供一个帐号验证的功能。
  我们把观察点先集中在一个大区内。在大多数情况下,一个大区内都会有多组游戏服,也就是多个 游戏世界可供选择。简单点来实现,我们完全可以抛弃这个大区的概念,认为一个大区也就是放在同一个机房的多台服务器组,各服务器组间没有什么关系。这样, 我们可为每组服务器单独配备一台登录服。最后的结构图应该像这样:
  loginServer  gameServer
     |          /
     |        /
     client
  该结构下的玩家操作流程为,先选择大区,再选择大区下的某台服务器,即某个游戏世界,点击进入后开始帐号验证过程,验证成功则进入了该游戏世界。但是,如果玩家想要切换游戏世界,他只能先退出当前游戏世界,然后进入新的游戏世界重新进行帐号验证。
  早期的游戏大都采用的是这种结构,有些游戏在实现时采用了一些技术手段使得在切换游戏服时不需要再次验证帐号,但整体结构还是未做改变。
   该结构存在一个服务器资源配置的问题。因为登录服处理的逻辑相对来说比较简单,就是将玩家提交的帐号和密码送到数据库进行验证,和生成会话密钥发送给游 戏服和客户端,操作完成后连接就会立即断开,而且玩家在以后的游戏过程中不会再与登录服打任何交道。这样处理短连接的过程使得系统在大多数情况下都是比较 空闲的,但是在某些时候,由于请求比较密集,比如开新服的时候,登录服的负载又会比较大,甚至会处理不过来。
  另外在实际的游戏运营中,有些游戏世界很火爆,而有些游戏世界却非常冷清,甚至没有多少人玩的情况也是很常见的。所以,我们能否更合理地配置登录服资源,使得整个大区内的登录服可以共享就成了下一步改进的目标。

2、服务器结构探讨 -- 登录服的负载均衡 
  回想一下我们在玩wow时的操作流程:运行wow.exe进入游戏后,首先就会要求我们输入用户名和密码进行验证,验证成功后才会出来游戏世界列表,之后是排队进入游戏世界,开始游戏...
  可以看到跟前面的描述有个很明显的不同,那就是要先验证帐号再选择游戏世界。这种结构也就使得登录服不是固定配备给个游戏世界,而是全区共有的。
   我们可以试着从实际需求的角度来考虑一下这个问题。正如我们之前所描述过的那样,登录服在大多数情况下都是比较空闲的,也许我们的一个拥有20个游戏世 界的大区仅仅使用10台或更少的登录服即可满足需求。而当在开新区的时候,或许要配备40台登录服才能应付那如潮水般涌入的玩家登录请求。所以,登录服在 设计上应该能满足这种动态增删的需求,我们可以在任何时候为大区增加或减少登录服的部署。
  当然,在这里也不会存在要求添加太多登录服的情况。还是拿开新区的情况来说,即使新增加登录服满足了玩家登录的请求,游戏世界服的承载能力依然有限,玩家一样只能在排队系统中等待,或者是进入到游戏世界中导致大家都卡。
  另外,当我们在增加或移除登录服的时候不应该需要对游戏世界服有所改动,也不会要求重启世界服,当然也不应该要求客户端有什么更新或者修改,一切都是在背后自动完成。
  最后,有关数据持久化的问题也在这里考虑一下。一般来说,使用现有的商业数据库系统比自己手工技术先进要明智得多。我们需要持久化的数据有玩家的帐号及密码,玩家创建的角色相关信息,另外还有一些游戏世界全局共有数据也需要持久化。
  好了,需求已经提出来了,现在来考虑如何将其实现。
  对于负载均衡来说,已有了成熟的解决方案。一般最常用,也最简单部署的应该是基于DNS的负载均衡系统了,其通过在DNS中为一个域名配置多个IP地址 来实现。最新的DNS服务已实现了根据服务器系统状态来实现的动态负载均衡,也就是实现了真正意义上的负载均衡,这样也就有效地解决了当某台登录服当机 后,DNS服务器不能立即做出反应的问题。当然,如果找不到这样的解决方案,自己从头打造一个也并不难。而且,通过DNS来实现的负载均衡已经包含了所做 的修改对登录服及客户端的透明。
  而对于数据库的应用,在这种结构下,登录服及游戏世界服都会需要连接数据库。从数据库服务器的部署上来说,可以将帐号和角色数据都放在一个中心数据库中,也可分为两个不同的库分别来处理,基到从物理上分到两台不同的服务器上去也行。
  但是对于不同的游戏世界来说,其角色及游戏内数据都是互相独立的,所以一般情况下也就为每个游戏世界单独配备一台数据库服务器,以减轻数据库的压力。所 以,整体的服务器结构应该是一个大区有一台帐号数据库服务器,所有的登录服都连接到这里。而每个游戏世界都有自己的游戏数据库服务器,只允许本游戏世界内 的服务器连接。
  最后,我们的服务器结构就像这样:
              大区服务器        
          /     |       / 
           /       |       / 
          登录服1  登录服2   世界服1  世界服2
         /        |        |       |   
          /      |         |        |
          帐号数据库        DBS     DBS
  这里既然讨论到了大区及帐号数据库,所以顺带也说一下关于激活大区的概念。wow中一共有八个大区,我们想要进入某个大区游戏之前,必须到官网上激活这个区,这是为什么呢?
  一般来说,在各个大区帐号数据库之上还有一个总的帐号数据库,我们可以称它为中心数据库。比如我们在官网上注册了一个帐号,这时帐号数据是只保存在中心 数据库上的。而当我们要到一区去创建角色开始游戏的时候,在一区的帐号数据库中并没有我们的帐号数据,所以,我们必须先到官网上做一次激活操作。这个激活 的过程也就是从中心库上把我们的帐号数据拷贝到所要到的大区帐号数据库中。

3、服务器结构探讨 -- 继续世界服
  都已经看出来了,这种每切换一次地图就要重新连接服务器的方式实在是不够优雅,而且在实际游戏运营中也发现,地图切换导致的卡号,复制装备等问题非常多,这里完全就是一个事故多发地段,如何避免这种频繁的连接操作呢?
  最直接的方法就是把那个图倒转过来就行了。客户端只需要连接到中心服上,所有到地图服务器的数据都由中心服来转发。很完美的解决方案,不是吗?
  这种结构在实际的部署中也遇到了一些挑战。对于一般的MMORPG服务器来说,单台服务器的承载量平均在2000左右,如果你的服务器很不幸地只能带 1000人,没关系,不少游戏都是如此;如果你的服务器上跑了3000多玩家依然比较流畅,那你可以自豪地告诉你的策划,多设计些大量消耗服务器资源的玩 法吧,比如大型国战、公会战争等。
  2000人,似乎我们的策划朋友们不大愿意接受这个数字。我们将地图服务器分开来原来也是想将负载分开,以多带些客户端,现在要所有的连接都从中心服上转发,那连接数又遇到单台服务器的可最大承载量的瓶颈了。
  这里有必要再解释下这个数字。我知道,有人一定会说,才带2000人,那是你水平不行,我随便写个TCP服务器都可带个五六千连接。问题恰恰在于你是随 便写的,而MMORPG的服务器是复杂设计的。如果一个演示socket API用的echo服务器就能满足MMOG服务器的需求,那写服务器该是件多么 惬意的事啊。
  但我们所遇到的事实是,服务器收到一个移动包后,要向周围所有人广播,而不是echo服务器那样简单的回应;服务器在收到 一个连接断开通知时要向很多人通知玩家退出事件,并将该玩家的资料写入数据库,而不是echo服务器那样什么都不需要做;服务器在收到一个物品使用请求包 后要做一系列的逻辑判断以检查玩家有没有作弊;服务器上还启动着很多定时器用来更新游戏世界的各种状态......
  其实这么一比较,我们也看出资源消耗的所在了:服务器上大量的复杂的逻辑处理。再回过头来看看我们想要实现的结构,我们既想要有一个唯一的入口,使得客户端不用频繁改变连接,又希望这个唯一入口的负载不会太大,以致于接受不了多少连接。
  仔细看一看这个需求,我们想要的仅仅只是一台管理连接的服务器,并不打算让他承担太多的游戏逻辑。既然如此,那五六千个连接也还有满足我们的要求。至少 在现在来说,一个游戏世界内,也就是一组服务器内同时有五六千个在线的玩家还是件让人很兴奋的事。事实上,在大多数游戏的大部分时间里,这个数字也是很让 人眼红的。
  什么?你说梦幻、魔兽还有史先生的那个什么征途远不止这么点人了!噢,我说的是大多数,是大多数,不包括那些明星。你知道大陆现在有多少游戏在运营吗?或许你又该说,我们不该在一开始就把自己的目标定的太低!好吧,我们还是先不谈这个。
  继续我们的结构讨论。一般来说,我们把这台负责连接管理的服务器称为网关服务器,因为内部的数据都要通过这个网关才能出去,不过从这台服务器提供的功能来看,称其为反向代理服务器可能更合适。我们也不在这个名字上纠缠了,就按大家通用的叫法,还是称他为网关服务器吧。
  网关之后的结构我们依然可以采用之前描述的方案,只是,似乎并没有必要为每一个地图都开一个独立的监听端口了。我们可以试着对地图进行一些划分,由一个 Master Server来管理一些更小的Zone Server,玩家通过网关连接到Master Server上,而实际与地图有关的逻辑是分派给 更小的Zone Server去处理。
  最后的结构看起来大概是这样的:
       Zone Server        Zone Server
               /            /
                /          /
               Master Server          Master Server
                   /       /                   /
                  /         /                 /
       Gateway Server        /               /
           |        /         /             /
           |         /         /           /
           |               Center Server
           |
           |
          Client
  什么MMORPG的逻辑可以使单台服务器能上2000?
  NPC都是死的?玩家都不干活????
  首先2000这个数字是我统计的一个平均值,统计的依据来自于与其他人的讨论和别人提供的数据,另外一些公司提供的运营数据打点折也可以估算个大概。或许是大家都夸大了自己的能力,或公司公开的数据水分超过了我的估计?呵呵
  当然,我们的游戏也没有单台2000,但我认为现在的服务器存在很大的提升余地
  至于你说的NPC是死的,玩家干不干活
  NPC最消耗系统资源的当属AI了,特别是一些复杂的寻路,这个完全可以分离到一台单独的AI服务器上,不少游戏都是这么做的,从一些泄漏出来的服务器端上也可以看到
  生物管理,状态更新和消息广播在Zone Server上做,其他公共逻辑模块在Master Server和Center Server上跑,那这样其实也就没有一个单台服务器承载量的概念了,可能要说数据的话还是以一组服务器为单位比较合适
  另外我一直以wow的结构来做参考,希望实现的也跟wow差不多,所以这些数字也可以算做是我的目标吧。

4、服务器结构探讨 -- 最终的结构
  如果我们就此打住,可能马上就会有人要嗤之以鼻了,就这点古董级的技术也敢出来现。好吧,我们还是把之前留下的问题拿出来解决掉吧。
  一般来说,当某一部分能力达不到我们的要求时,最简单的解决方法就是在此多投入一点资源。既然想要更多的连接数,那就再加一台网关服务器吧。新增加了网关服后需要在大区服上做相应的支持,或者再简单点,有一台主要的网关服,当其负载较高时,主动将新到达的连接重定向到其他网关服上。
  而对于游戏服来说,有一台还是多台网关服是没有什么区别的。每个代表客户端玩家的对象内部都保留一个代表其连接的对象,消息广播时要求每个玩家对象使用自己的连接对象发送数据即可,至于连接是在什么地方,那是完全透明的。当然,这只是一种简单的实现,也是普通使用的一种方案,如果后期想对消息广播做一些优化的话,那可能才需要多考虑一下。
  既然说到了优化,我们也稍稍考虑一下现在结构下可能采用的优化方案。
  首先是当前的Zone Server要做的事情太多了,以至于他都处理不了多少连接。这其中最消耗系统资源的当属生物的AI处理了,尤其是那些复杂的寻路算法,所以我们可以考虑把这部分AI逻辑独立出来,由一台单独的AI服务器来承担。
  然后,我们可以试着把一些与地图数据无关的公共逻辑放到Master Server上去实现,这样Zone Server上只保留了与地图数据紧密相关的逻辑,如生物管理,玩家移动和状态更新等。
  还有聊天处理逻辑,这部分与游戏逻辑没有任何关联,我们也完全可以将其独立出来,放到一台单独的聊天服务器上去实现。
  最后是数据库了,为了减轻数据库的压力,提高数据请求的响应速度,我们可以在数据库之前建立一个数据库缓存服务器,将一些常用数据缓存在此,服务器与数据库的通信都要通过这台服务器进行代理。缓存的数据会定时的写入到后台数据库中。
  好了,做完这些优化我们的服务器结构大体也就定的差不多了,暂且也不再继续深入,更细化的内容等到各个部分实现的时候再探讨。
  好比我们去看一场晚会,舞台上演员们按着预定的节目单有序地上演着,但这就是整场晚会的全部吗?显然不止,在幕后还有太多太多的人在忙碌着,甚至在晚会前和晚会后都有。我们的游戏服务器也如此。
  在之前描述的部分就如同舞台上的演员,是我们能直接看到的,幕后的工作人员我们也来认识一下。
  现实中有警察来维护秩序,游戏中也如此,这就是我们常说的GM。GM可以采用跟普通玩家一样的拉入方式来进入游戏,当然权限会比普通玩家高一些,也可以提供一台GM服务器专门用来处理GM命令,这样可以有更高的安全性,GM服一般接在中心服务器上。
  在以时间收费的游戏中,我们还需要一台计费的服务器,这台服务器一般接在网关服务器上,注册玩家登录和退出事件以记录玩家的游戏时间。
  任何为用户提供服务的地方都会有日志记录,游戏服务器当然也不例外。从记录玩家登录的时间,地址,机器信息到游戏过程中的每一项操作都可以作为日志记录下来,以备查错及数据挖掘用。至于搜集玩家机器资料所涉及到的法律问题不是我们该考虑的。
  差不多就这么多了吧,接下来我们会按照这个大致的结构来详细讨论各部分的实现。

5、服务器结构探讨 -- 一点杂谈
  再强调一下,服务器结构本无所谓好坏,只有是否适合自己。我们在前面探讨了一些在现在的游戏中见到过的结构,并尽我所知地分析了各自存在的一些问题和可以做的一些改进,希望其中没有谬误,如果能给大家也带来些启发那自然更好。
  突然发现自己一旦罗嗦起来还真是没完没了。接下来先说说我在开发中遇到过的一些困惑和一基础问题探讨吧,这些问题可能有人与我一样,也曾遇到过,或者正在被困扰中,而所要探讨的这些基础问题向来也是争论比较多的,我们也不评价其中的好与坏,只做简单的描述。
  首先是服务器操作系统,linux与windows之争随处可见,其实在大多数情况下这不是我们所能决定的,似乎各大公司也基本都有了自己的传统,如网易的freebsd,腾讯的linux等。如果真有权利去选择的话,选自己最熟悉的吧。
  决定了OS也就基本上确定了网络IO模型,windows上的IOCP和linux下的epool,或者直接使用现有的网络框架,如ACE和asio等,其他还有些商业的网络库在国内的使用好像没有见到,不符合中国国情嘛。:)
  然后是网络协议的选择,以前的选择大多倾向于UDP,为了可靠传输一般自己都会在上面实现一层封装,而现在更普通的是直接采用本身就很可靠的TCP,或者TCP与UDP的混用。早期选择UDP的主要原因还是带宽限制,现在宽带普通的情况下TCP比UDP多出来的一点点开销与开发的便利性相比已经不算什么了。当然,如果已有了成熟的可靠UDP库,那也可以继续使用着。
  还有消息包格式的定义,这个曾在云风的blog上展开过激烈的争论。消息包格式定义包括三段,包长、消息码和包体,争论的焦点在于应该是消息码在前还是包长在前,我们也把这个当作是信仰问题吧,有兴趣的去云风的blog上看看,论论。
  另外早期有些游戏的包格式定义是以特殊字符作分隔的,这样一个好处是其中某个包出现错误后我们的游戏还能继续。但实际上,我觉得这是完全没有必要的,真要出现这样的错误,直接断开这个客户端的连接可能更安全。而且,以特殊字符做分隔的消息包定义还加大了一点点网络数据量。
  最后是一个纯技术问题,有关socket连接数的最大限制。开始学习网络编程的时候我犯过这样的错误,以为port的定义为unsigned short,所以想当然的认为服务器的最大连接数为65535,这会是一个硬性的限制。而实际上,一个socket描述符在windows上的定义是unsigned int,因此要有限制那也是四十多亿,放心好了。
  在服务器上port是监听用的,想象这样一种情况,web server在80端口上监听,当一个连接到来时,系统会为这个连接分配一个socket句柄,同时与其在80端口上进行通讯;当另一个连接到来时,服务器仍然在80端口与之通信,只是分配的socket句柄不一样。这个socket句柄才是描述每个连接的唯一标识。按windows网络编程第二版上的说法,这个上限值配置影响。
  好了,废话说完了,下一篇,我们开始进入登录服的设计吧。

6、登录服的设计 -- 功能需求
  正如我们在前面曾讨论过的,登录服要实现的功能相当简单,就是帐号验证。为了便于描述,我们暂不引入那些讨论过的优化手段,先以最简单的方式实现,另外也将基本以mangos的代码作为参考来进行描述。
  想象一下帐号验证的实现方法,最容易的那就是把用户输入的明文用帐号和密码直接发给登录服,服务器根据帐号从数据库中取出密码,与用户输入的密码相比较。
  这个方法存在的安全隐患实在太大,明文的密码传输太容易被截获了。那我们试着在传输之前先加一下密,为了服务器能进行密码比较,我们应该采用一个可逆的加密算法,在服务器端把这个加密后的字串还原为原始的明文密码,然后与数据库密码进行比较。既然是一个可逆的过程,那外挂制作者总有办法知道我们的加密过程,所以,这个方法仍不够安全。
  哦,如果我们只是希望密码不可能被还原出来,那还不容易吗,使用一个不可逆的散列算法就行了。用户在登录时发送给服务器的是明文的帐号和经散列后的不可逆密码串,服务器取出密码后也用同样的算法进行散列后再进行比较。比如,我们就用使用最广泛的md5算法吧。噢,不要管那个王小云的什么论文,如果我真有那么好的运气,早中500w了,还用在这考虑该死的服务器设计吗?
  似乎是一个很完美的方案,外挂制作者再也偷不到我们的密码了。慢着,外挂偷密码的目的是什么?是为了能用我们的帐号进游戏!如果我们总是用一种固定的算法来对密码做散列,那外挂只需要记住这个散列后的字串就行了,用这个做密码就可以成功登录。
  嗯,这个问题好解决,我们不要用固定的算法进行散列就是了。只是,问题在于服务器与客户端采用的散列算法得出的字串必须是相同的,或者是可验证其是否匹配的。很幸运的是,伟大的数学字们早就为我们准备好了很多优秀的这类算法,而且经理论和实践都证明他们也确实是足够安全的。
  这其中之一是一个叫做SRP的算法,全称叫做Secure Remote Password,即安全远程密码。wow使用的是第6版,也就是SRP6算法。有关其中的数学证明,如果有人能向我解释清楚,并能让我真正弄明白的话,我将非常感激。不过其代码实现步骤倒是并不复杂,mangos中的代码也还算清晰,我们也不再赘述。
  登录服除了帐号验证外还得提供另一项功能,就是在玩家的帐号验证成功后返回给他一个服务器列表让他去选择。这个列表的状态要定时刷新,可能有新的游戏世界开放了,也可能有些游戏世界非常不幸地停止运转了,这些状态的变化都要尽可能及时地让玩家知道。不管发生了什么事,用户都有权利知道,特别是对于付过费的用户来说,我们不该藏着掖着,不是吗?
  这个游戏世界列表的功能将由大区服来提供,具体的结构我们在之前也描述过,这里暂不做讨论。登录服将从大区服上获取到的游戏世界列表发给已验证通过的客户端即可。好了,登录服要实现的功能就这些,很简单,是吧。
  确实是太简单了,不过简单的结构正好更适合我们来看一看游戏服务器内部的模块结构,以及一些服务器共有组件的实现方法。这就留作下一篇吧。

7、服务器公共组件实现 -- mangos的游戏主循环
  当阅读一项工程的源码时,我们大概会选择从main函数开始,而当开始一项新的工程时,第一个写下的函数大多也是main。那我们就先来看看,游戏服务器代码实现中,main函数都做了些什么。
  由于我在读技术文章时最不喜看到的就是大段大段的代码,特别是那些直接Ctrl+C再Ctrl+V后未做任何修改的代码,用句时髦的话说,一点技术含量都没有!所以在我们今后所要讨论的内容中,尽量会避免出现直接的代码,在有些地方确实需要代码来表述时,也将会选择使用伪码。
  先从mangos的登录服代码开始。mangos的登录服是一个单线程的结构,虽然在数据库连接中可以开启一个独立的线程,但这个线程也只是对无返回结果的执行类SQL做缓冲,而对需要有返回结果的查询类SQL还是在主逻辑线程中阻塞调用的。
  登录服中唯一的这一个线程,也就是主循环线程对监听的socket做select操作,为每个连接进来的客户端读取其上的数据并立即进行处理,直到服务器收到SIGABRT或SIGBREAK信号时结束。
  所以,mangos登录服主循环的逻辑,也包括后面游戏服的逻辑,主循环的关键代码其实是在SocketHandler中,也就是那个Select函数中。检查所有的连接,对新到来的连接调用OnAccept方法,有数据到来的连接则调用OnRead方法,然后socket处理器自己定义对接收到的数据如何处理。
  很简单的结构,也比较容易理解。
  只是,在对性能要求比较高的服务器上,select一般不会是最好的选择。如果我们使用windows平台,那IOCP将是首选;如果是linux,epool将是不二选择。我们也不打算讨论基于IOCP或是基于epool的服务器实现,如果仅仅只是要实现服务器功能,很简单的几个API调用即可,而且网上已有很多好的教程;如果是要做一个成熟的网络服务器产品,不是我几篇简单的技术介绍文章所能达到。
  另外,在服务器实现上,网络IO与逻辑处理一般会放在不同的线程中,以免耗时较长的IO过程阻塞住了需要立即反应的游戏逻辑。
  数据库的处理也类似,会使用异步的方式,也是避免耗时的查询过程将游戏服务器主循环阻塞住。想象一下,因某个玩家上线而发起的一次数据库查询操作导致服务器内所有在线玩家都卡住不动将是多么恐怖的一件事!
  另外还有一些如事件、脚本、消息队列、状态机、日志和异常处理等公共组件,我们也会在接下来的时间里进行探讨。

8、服务器公共组件实现 -- 继续来说主循环
  前面我们只简单了解了下mangos登录服的程序结构,也发现了一些不足之处,现在我们就来看看如何提供一个更好的方案。
  正如我们曾讨论过的,为了游戏主逻辑循环的流畅运行,所有比较耗时的IO操作都会分享到单独的线程中去做,如网络IO,数据库IO和日志IO等。当然,也有把这些分享到单独的进程中去做的。
  另外对于大多数服务器程序来说,在运行时都是作为精灵进程或服务进程的,所以我们并不需要服务器能够处理控制台用户输入,我们所要处理的数据来源都来自网络。
  这样,主逻辑循环所要做的就是不停要取消息包来处理,当然这些消息包不仅有来自客户端的玩家操作数据包,也有来自GM服务器的管理命令,还包括来自数据库查询线程的返回结果消息包。这个循环将一直持续,直到收到一个通知服务器关闭的消息包。
  主逻辑循环的结构还是很简单的,复杂的部分都在如何处理这些消息包的逻辑上。我们可以用一段简单的伪码来描述这个循环过程:
    while (Message* msg = getMessage())
    {
      if (msg为服务器关闭消息)
        break;
      处理msg消息;
    }
  这里就有一个问题需要探讨了,在getMessage()的时候,我们应该去哪里取消息?前面我们考虑过,至少会有三个消息来源,而我们还讨论过,这些消息源的IO操作都是在独立的线程中进行的,我们这里的主线程不应该直接去那几处消息源进行阻塞式的IO操作。
  很简单,让那些独立的IO线程在接收完数据后自己送过来就是了。好比是,我这里提供了一个仓库,有很多的供货商,他们有货要给我的时候只需要交到仓库,然后我再到仓库去取就是了,这个仓库也就是消息队列。消息队列是一个普通的队列实现,当然必须要提供多线程互斥访问的安全性支持,其基本的接口定义大概类似这样:
    IMessageQueue
    {
      void putMessage(Message*);
      Message* getMessage();
    }
  网络IO,数据库IO线程把整理好的消息包都加入到主逻辑循环线程的这个消息队列中便返回。有关消息队列的实现和线程间消息的传递在ACE中有比较完全的代码实现及描述,还有一些使用示例,是个很好的参考。
  这样的话,我们的主循环就很清晰了,从主线程的消息队列中取消息,处理消息,再取下一条消息......

9、服务器公共组件实现 -- 消息队列
  既然说到了消息队列,那我们继续来稍微多聊一点吧。
  我们所能想到的最简单的消息队列可能就是使用stl的list来实现了,即消息队列内部维护一个list和一个互斥锁,putMessage时将message加入到队列尾,getMessage时从队列头取一个message返回,同时在getMessage和putMessage之前都要求先获取锁资源。
  实现虽然简单,但功能是绝对满足需求的,只是性能上可能稍稍有些不尽如人意。其最大的问题在频繁的锁竞争上。
  对于如何减少锁竞争次数的优化方案,Ghost Cheng提出了一种。提供一个队列容器,里面有多个队列,每个队列都可固定存放一定数量的消息。网络IO线程要给逻辑线程投递消息时,会从队列容器中取一个空队列来使用,直到将该队列填满后再放回容器中换另一个空队列。而逻辑线程取消息时是从队列容器中取一个有消息的队列来读取,处理完后清空队列再放回到容器中。
  这样便使得只有在对队列容器进行操作时才需要加锁,而IO线程和逻辑线程在操作自己当前使用的队列时都不需要加锁,所以锁竞争的机会大大减少了。
  这里为每个队列设了个最大消息数,看来好像是打算只有当IO线程写满队列时才会将其放回到容器中换另一个队列。那这样有时也会出现IO线程未写满一个队列,而逻辑线程又没有数据可处理的情况,特别是当数据量很少时可能会很容易出现。Ghost Cheng在他的描述中没有讲到如何解决这种问题,但我们可以先来看看另一个方案。
  这个方案与上一个方案基本类似,只是不再提供队列容器,因为在这个方案中只使用了两个队列,arthur在他的一封邮件中描述了这个方案的实现及部分代码。两个队列,一个给逻辑线程读,一个给IO线程用来写,当逻辑线程读完队列后会将自己的队列与IO线程的队列相调换。所以,这种方案下加锁的次数会比较多一些,IO线程每次写队列时都要加锁,逻辑线程在调换队列时也需要加锁,但逻辑线程在读队列时是不需要加锁的。
  虽然看起来锁的调用次数是比前一种方案要多很多,但实际上大部分锁调用都是不会引起阻塞的,只有在逻辑线程调换队列的那一瞬间可能会使得某个线程阻塞一下。另外对于锁调用过程本身来说,其开销是完全可以忽略的,我们所不能忍受的仅仅是因为锁调用而引起的阻塞而已。
  两种方案都是很优秀的优化方案,但也都是有其适用范围的。Ghost Cheng的方案因为提供了多个队列,可以使得多个IO线程可以总工程师的,互不干扰的使用自己的队列,只是还有一个遗留问题我们还不了解其解决方法。arthur的方案很好的解决了上一个方案遗留的问题,但因为只有一个写队列,所以当想要提供多个IO线程时,线程间互斥地写入数据可能会增大竞争的机会,当然,如果只有一个IO线程那将是非常完美的。

10、服务器公共组件实现 -- 环形缓冲区
  消息队列锁调用太频繁的问题算是解决了,另一个让人有些苦恼的大概是这太多的内存分配和释放操作了。频繁的内存分配不但增加了系统开销,更使得内存碎片不断增多,非常不利于我们的服务器长期稳定运行。也许我们可以使用内存池,比如SGI STL中附带的小内存分配器。但是对于这种按照严格的先进先出顺序处理的,块大小并不算小的,而且块大小也并不统一的内存分配情况来说,更多使用的是一种叫做环形缓冲区的方案,mangos的网络代码中也有这么一个东西,其原理也是比较简单的。
  就好比两个人围着一张圆形的桌子在追逐,跑的人被网络IO线程所控制,当写入数据时,这个人就往前跑;追的人就是逻辑线程,会一直往前追直到追上跑的人。如果追上了怎么办?那就是没有数据可读了,先等会儿呗,等跑的人向前跑几步了再追,总不能让游戏没得玩了吧。那要是追的人跑的太慢,跑的人转了一圈过来反追上追的人了呢?那您也先歇会儿吧。要是一直这么反着追,估计您就只能换一个跑的更快的追逐者了,要不这游戏还真没法玩下去。
  前面我们特别强调了,按照严格的先进先出顺序进行处理,这是环形缓冲区的使用必须遵守的一项要求。也就是,大家都得遵守规定,追的人不能从桌子上跨过去,跑的人当然也不允许反过来跑。至于为什么,不需要多做解释了吧。
  环形缓冲区是一项很好的技术,不用频繁的分配内存,而且在大多数情况下,内存的反复使用也使得我们能用更少的内存块做更多的事。
  在网络IO线程中,我们会为每一个连接都准备一个环形缓冲区,用于临时存放接收到的数据,以应付半包及粘包的情况。在解包及解密完成后,我们会将这个数据包复制到逻辑线程消息队列中,如果我们只使用一个队列,那这里也将会是个环形缓冲区,IO线程往里写,逻辑线程在后面读,互相追逐。可要是我们使用了前面介绍的优化方案后,可能这里便不再需要环形缓冲区了,至少我们并不再需要他们是环形的了。因为我们对同一个队列不再会出现同时读和写的情况,每个队列在写满后交给逻辑线程去读,逻辑线程读完后清空队列再交给IO线程去写,一段固定大小的缓冲区即可。没关系,这么好的技术,在别的地方一定也会用到的。

原文链接

著作权归作者所有,商业转载请联系作者获得授权,非商业转载请注明出处。

如社区发表内容存在侵权行为,您可以点击这里查看侵权投诉指引

游戏学院公众号二维码
腾讯游戏学院
微信公众号

提供更专业的游戏知识学习平台