WebGL入门教程(十一)透视投影

发表于2017-12-12
评论0 1.7k浏览

这篇文章和大家介绍下透视投影,与正射投影不同,透视投影会出近大远小的效果,与人的视觉效果一直,游戏中一般都是使用的透视投影。

示例:

/**
 * 透视投影矩阵
 * xu.lidong@qq.com
 * */
var g_vs = `
attribute vec4 a_Position;
attribute vec4 a_Color;
uniform mat4 u_ViewMat;
uniform mat4 u_ProjMat;
varying vec4 v_Color;
void main() {
    gl_Position = u_ProjMat * u_ViewMat * a_Position;
    v_Color = a_Color;
}`;
var g_fs = `
precision mediump float;
varying vec4 v_Color;
void main(){
    gl_FragColor = v_Color;
}`;
function main() {
    var gl = getGL();
    var shaderProgram = initShader(gl);
    var n = initVertexBuffers(gl, shaderProgram);
    draw(gl, shaderProgram, n);
}
function getGL() {
    var canvas = document.getElementById("container");
    return canvas.getContext("webgl") || canvas.getContext("experimental-webgl");
}
function initShader(gl) {
    var vs = gl.createShader(gl.VERTEX_SHADER);
    gl.shaderSource( vs, g_vs);
    gl.compileShader(vs);
    var fs = gl.createShader(gl.FRAGMENT_SHADER);
    gl.shaderSource( fs, g_fs);
    gl.compileShader(fs);
    var shaderProgram = gl.createProgram();
    gl.attachShader(shaderProgram, vs);
    gl.attachShader(shaderProgram, fs);
    gl.linkProgram(shaderProgram);
    gl.useProgram(shaderProgram);
    return shaderProgram;
}
function initVertexBuffers(gl, shaderProgram) {
    var verticesColors = new Float32Array([
        0.75,  1.0,  -4.0,  0.4,  1.0,  0.4,
        0.25, -1.0,  -4.0,  0.4,  1.0,  0.4,
        1.25, -1.0,  -4.0,  1.0,  0.4,  0.4,
        0.75,  1.0,  -2.0,  1.0,  1.0,  0.4,
        0.25, -1.0,  -2.0,  1.0,  1.0,  0.4,
        1.25, -1.0,  -2.0,  1.0,  0.4,  0.4,
        0.75,  1.0,   0.0,  0.4,  0.4,  1.0,
        0.25, -1.0,   0.0,  0.4,  0.4,  1.0,
        1.25, -1.0,   0.0,  1.0,  0.4,  0.4,
        -0.75,  1.0,  -4.0,  0.4,  1.0,  0.4,
        -1.25, -1.0,  -4.0,  0.4,  1.0,  0.4,
        -0.25, -1.0,  -4.0,  1.0,  0.4,  0.4,
        -0.75,  1.0,  -2.0,  1.0,  1.0,  0.4,
        -1.25, -1.0,  -2.0,  1.0,  1.0,  0.4,
        -0.25, -1.0,  -2.0,  1.0,  0.4,  0.4,
        -0.75,  1.0,   0.0,  0.4,  0.4,  1.0,
        -1.25, -1.0,   0.0,  0.4,  0.4,  1.0,
        -0.25, -1.0,   0.0,  1.0,  0.4,  0.4,
    ]);
    var FSIZE = verticesColors.BYTES_PER_ELEMENT;
    var vertexColorBuffer = gl.createBuffer();
    gl.bindBuffer(gl.ARRAY_BUFFER, vertexColorBuffer);
    gl.bufferData(gl.ARRAY_BUFFER, verticesColors, gl.STATIC_DRAW);
    var a_Position = gl.getAttribLocation(shaderProgram, "a_Position");
    gl.vertexAttribPointer(a_Position, 3, gl.FLOAT, false, FSIZE * 6, 0);
    gl.enableVertexAttribArray(a_Position);
    var a_Color = gl.getAttribLocation(shaderProgram, "a_Color");
    gl.vertexAttribPointer(a_Color, 3, gl.FLOAT, false, FSIZE * 6, FSIZE * 3);
    gl.enableVertexAttribArray(a_Color);
    return verticesColors.length / 6;
}
function draw(gl, shaderProgram, n) {
    var u_ProjMat = gl.getUniformLocation(shaderProgram, "u_ProjMat");
    var projMat = getPerspectiveProjection(60, 1280/720, 1, 100);
    gl.uniformMatrix4fv(u_ProjMat, false, projMat);
    var u_ViewMat = gl.getUniformLocation(shaderProgram, "u_ViewMat");
    var viewMat = lookAt(0, 0, 6, 0, 0, -100, 0, 1, 0);
    gl.uniformMatrix4fv(u_ViewMat, false, viewMat);
    gl.clearColor(0.0, 0.0, 0.0, 1.0);
    gl.clear(gl.COLOR_BUFFER_BIT);
    gl.drawArrays(gl.TRIANGLES, 0, n);
}
function getPerspectiveProjection(fov, aspect, near, far) {
    var fovy = Math.PI * fov / 180 / 2;
    var s = Math.sin(fovy);
    var rd = 1 / (far - near);
    var ct = Math.cos(fovy) / s;
    return new Float32Array([
        ct / aspect, 0, 0, 0,
        0, ct, 0, 0,
        0, 0, -(far + near) * rd, -1,
        0, 0, -2 * near * far * rd, 0,
    ]);
}
/**
 *  以下代码为lookAt的实现
 * */
/**
 * 由平移向量获取平移矩阵
 * */
function getTranslationMatrix(x, y, z) {
    return new Float32Array([
        1.0, 0.0, 0.0, 0.0,
        0.0, 1.0, 0.0, 0.0,
        0.0, 0.0, 1.0, 0.0,
        x, y, z, 1.0,
    ]);
}
/**
 * 由旋转弧度和旋转轴获取旋转矩阵
 * */
function getRotationMatrix(rad, x, y, z) {
    if (x > 0) {
        // 绕x轴的旋转矩阵
        return new Float32Array([
            1.0, 0.0, 0.0, 0.0,
            0.0, Math.cos(rad), -Math.sin(rad), 0.0,
            0.0, Math.sin(rad), Math.cos(rad), 0.0,
            0.0, 0.0, 0.0, 1.0,
        ]);
    } else if (y > 0) {
        // 绕y轴的旋转矩阵
        return new Float32Array([
            Math.cos(rad), 0.0, -Math.sin(rad), 0.0,
            0.0, 1.0, 0.0, 0.0,
            Math.sin(rad), 0.0, Math.cos(rad), 0.0,
            0.0, 0.0, 0.0, 1.0,
        ]);
    } else if(z > 0) {
        // 绕z轴的旋转矩阵
        return new Float32Array([
            Math.cos(rad), Math.sin(rad), 0.0, 0.0,
            -Math.sin(rad), Math.cos(rad), 0.0, 0.0,
            0.0, 0.0, 1.0, 0.0,
            0.0, 0.0, 0.0, 1.0,
        ]);
    } else {
        // 没有指定旋转轴,报个错,返回一个单位矩阵
        console.error("error: no axis");
        return new Float32Array([
            1.0, 0.0, 0.0, 0.0,
            0.0, 1.0, 0.0, 0.0,
            0.0, 0.0, 1.0, 0.0,
            0.0, 0.0, 0.0, 1.0,
        ]);
    }
}
/**
 * 视图矩阵
 * */
function lookAt(eyeX, eyeY, eyeZ, centerX, centerY, centerZ, upX, upY, upZ) {
    var zAxis = subVector([centerX, centerY, centerZ], [eyeX, eyeY, eyeZ]);
    var N = normalizeVector(zAxis);
    var xAxis = crossMultiVector(N, [upX, upY, upZ]);
    var U = normalizeVector(xAxis);
    var V = crossMultiVector(U, N);
    // 旋转的逆矩阵
    var r = new Float32Array([
        U[0], V[0], -N[0], 0,
        U[1], V[1], -N[1], 0,
        U[2], V[2], -N[2], 0,
        0, 0, 0, 1
    ]);
    // 平移的逆矩阵
    var t = getTranslationMatrix(-eyeX, -eyeY, -eyeZ);
    return multiMatrix44(r, t);
}
/**
 * 由缩放因子获取缩放矩阵
 * */
function getScaleMatrix(xScale, yScale, zScale) {
    return new Float32Array([
        xScale, 0.0, 0.0, 0.0,
        0.0, yScale, 0.0, 0.0,
        0.0, 0.0, zScale, 0.0,
        0.0, 0.0, 0.0, 1.0,
    ]);
}
/**
 * 向量点乘
 * */
function dotMultiVector(v1, v2) {
    var res = 0;
    for (var i = 0; i < v1.length; i++) {
        res += v1[i] * v2[i];
    }
    return res;
}
/**
 * 向量叉乘
 * */
function crossMultiVector(v1, v2) {
    return [
        v1[1] * v2[2] - v1[2] * v2[1],
        v1[2] * v2[0] - v1[0] * v2[2],
        v1[0] * v2[1] - v1[1] * v2[0]
    ];
}
/**
 * 向量减法
 * */
function subVector(v1, v2){
    return [v1[0] - v2[0], v1[1] - v2[1], v1[2] - v2[2]];
}
/**
 * 向量加法
 * */
function addVector(v1, v2){
    return [v1[0] + v2[0], v1[1] + v2[1], v1[2] + v2[2]];
}
/**
 * 向量归一化
 * */
function normalizeVector(v) {
    var len = Math.sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
    return (len > 0.00001) ? [v[0]/len, v[1]/len, v[2]/len] : [0, 0, 0];
}
/**
 * 4 x 4 矩阵的转置
 * */
function transposeMatrix(mat) {
    var res = new Float32Array(16);
    for (var i = 0; i < 4; i++) {
        for (var j = 0; j < 4; j++) {
            res[i * 4 + j] = mat[j * 4 + i];
        }
    }
    return res;
}
/**
 * 4 x 4 矩阵乘法
 * */
function multiMatrix44(m1, m2) {
    var mat1 = transposeMatrix(m1);
    var mat2 = transposeMatrix(m2);
    var res = new Float32Array(16);
    for (var i = 0; i < 4; i++) {
        var row = [mat1[i * 4], mat1[i * 4 + 1], mat1[i * 4 + 2], mat1[i * 4 + 3]];
        for (var j = 0; j < 4; j++) {
            var col = [mat2[j], mat2[j + 4], mat2[j + 8], mat2[j + 12]];
            res[i * 4 + j] = dotMultiVector(row, col);
        }
    }
    return transposeMatrix(res);
}

上列中,前后绘制了分三排绘制了9个三角形,可以看到,距离视点越远的三角形越小,如图:

从图中可以看到,遮挡关系是不正确的,前面的物品被后面的遮挡住了,修改draw函数如下:

function draw(gl, shaderProgram, n) {
    var u_ProjMat = gl.getUniformLocation(shaderProgram, "u_ProjMat");
    var projMat = getPerspectiveProjection(60, 1280/720, 1, 100);
    gl.uniformMatrix4fv(u_ProjMat, false, projMat);
    var u_ViewMat = gl.getUniformLocation(shaderProgram, "u_ViewMat");
    var viewMat = lookAt(0, 0, 6, 0, 0, -100, 0, 1, 0);
    gl.uniformMatrix4fv(u_ViewMat, false, viewMat);
    gl.clearColor(0.0, 0.0, 0.0, 1.0);
    gl.enable(gl.DEPTH_TEST);// 开启深度测试
    gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT);// 增加清空深度缓冲区
    gl.drawArrays(gl.TRIANGLES, 0, n);
}

然后就正确了,如图:

如社区发表内容存在侵权行为,您可以点击这里查看侵权投诉指引